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GAIN MODIFICATION IN A BACKWARD PROPAGATION NEURAL NETWORK

Our research into backward propagation-has led to a number of new theoretical and
empirical results. We have developed a generalized version of backward propagation
which incorporates gain modification. In our generalized network, both gains and
synapses are modified by a backward propagation procedure. Synapses are modified in
proportion to the negative gradient of the energy with respect to the synaptic weight as in
ordinary backward propagation, and gains are modified in proportion to the negative partial
derivative with respect to the gain. Since the resulting error signals for the gain and
synaptic weights are proportional to one another, the computational complexity of our
generalized network is comparable to that of the original backward propagation model.

Simulations of the new network have been performed on a concentric circle paradigm in
two-dimensions. In the concentric circle problem, we present the x and y coordinates of
patterns in the unit circle. Those patterns which lie outside of a pre-determined radius are
in one class, while those interior to the radius belong to a second class. In our technical
report "Gain Modification Enhances High Momentum Backward Propagation” (Bachmann,
1989) we demonstrated that a combination of high momentum and gain modification leads
to faster convergence rate compared with high momentum alone. Bare backward
propagation converged at an even slower rate, as expected. The definition of convergence
for this study was that the network response for all patterns fall within 0.1 of the target
output . Additional work which we have carried out since the publication of our report has
shown that the onset of generalization for this paradigm actually occurs on fairly short time
scales, and there is essentially little difference in generalization between momentum and
momentum with gain modification on short time scales. However, both of these
approaches achieve significantly better levels of generalization than bare backward
propagation on short time scales. In essence, we have shown that with momentum or a
combination of gain modification, the network learns to generalize rapidly compared to
ordinary backward propagation. However, in precisely fitting the training data, the best
convergence rate is achieved by a combination of gain modification and momentum.

STATISTICAL FORMULATION OF FEATURE EXTRACTION

Our mathematical analysis of unsupervised learning has led to the statistical formulation of
the parameter estimation problem associated with unsupervised learning in a neural
network. The network is presented as an exploratory projection pursuit method that




performs feature extraction (or dimensionality reduction) on the training data set. The
formulation, which is similar in nature to PP, is based on a minimization of a cost function
over a set of parameters, yielding an optimal decision rule under some norm.

We have presented a new projection index (cost function) that favors directions possessing
multi-modality, where the multi-modality is measured in terms of the separability property
of the data. The synaptic modification equations, which perform the minimization of the
cost function, turn out to be similar to the synaptic modification equaﬁons governing
learning in BCM neurons (Bienenstock, Cooper, and Munro 1982). This has led to a new
statistical viewpoint on the biologicaly-inspired BCM neuron, making it a plausible
candidate for statistical feature extraction. The directions (synaptic weights) sought by the
neuron maximize some kind of skewness measure of the projected distribution in this
direction, which is one of the measures of deviation from normality, and therefore a
direction which discovers an important structure of the high-dimensional data. -

A network was presented based on the multiple feature extraction formulation. Both the
linear and non-linear neurons were analyzed.

-

Part of the analysis of the synaptic modification equations, which are stochastic in nature
due to the random inputs, was to compare their trajectories with a deterministic differential
equation. The deterministic equation corresponds to the average (expected value) of the
random differential equation, and is much easier to handle since it was shown that it
represents the gradient of our projection index.

The connection between the synaptic modification equations and their deterministic version
was analyzed by extending a general result on random differential equations (Geman,
SIAM 1979). This work concerns differential equations which contain strong mixing
random process. Mixing roughly says how the future of a random process depends on its
past. The solution process is shown to be well approximated in a probabilistic sense by a
deterministic trajectory, over infinite time interval, using the interplay between the rate of
fluctuations of the random process, and the rate of the mixing..
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AN AVERAGING RESULT FOR
" RANDOM DIFFERENTIAL EQUATIONS

Nathan Intrator
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Abstract This paper concerns differential equations which contain strong
mixing random processes. The solution process 1s shown to be well approx-
imated by a deterministic trajectory, over an infinite time interval, using
the interplay between the rate of fluctuations of the random process and
the rate of the ¢ mixing. An application of the result is given for analysing
synaptic modifications in Neural Networks.

1. Introduction

The mathematical theory of stochastic differential equations is concerned mainly wiia
the study of It6 equations and the associated Markov process. Mostly, the results on non
1td type equations have been concerned with the conditions under which r.(¢) converges (as
€ — 0) to a diffusion process on finite intervals [0,T /€] (cf. Stratonovich, 1963; Cogburn
and Hersh, 1973; Papanicolaou and Kohler, 1974; Blavnkenship and Papanicolaou 1977).
A\;etaging results for random differential equations are usually discussed in conjunction with
the law of large ﬂumbers Kohler and Papanicolaou (1976) with the central limit theorem
for (z(t) — ye(t))/ e on [0,T] (cf. Khasminskii, 1966; and White 1976). Geman (1979)
showed that the solution process of a randomn differential equation which contains strong

mixing random process is well appreximated by a deterministic tfajectory over a finite

time interval, and for a more restricted systems, over the infinite time interval. Analysis

wopl2 v2.11 1




N. Intrator . March 9, 1990

analogous to that was carried out on Its type equations by Vrkoe (1966), and by Lybrand
(1975). |

In this paper we shall continue the direction taken by Geman and approximate the solu-
tion process by a deterministic trajectory over an infinite time in_terval, using the interplay
between the rate of fluctuations of the random process and the ré.te of the ¢ mixing, yield-
ing a result for a wide family of nonlinear random differential equations. We will establish
conditions under which the random solution stays close in L? sense to the associated deter-
ministic solution. The result is particularly useful when a converging deterministic equation

is approximated by a random equation that is more computationally feasible. Section 4 is

devoted to such an application, in the theory of synaptic modification in Neural Networks.

Similar analysis was carried out on the discrete time version of such equations, see Ljung

(1978), Kushner and Clark, (1978), Dupuis and Kushner (1987), and the references therein.

2. Formulation and statement of the problem

In this section we briefly summarize the relevant results form Geman (1977, 1979).
Let ¢(t,w) be a bounded stationary stochastic process with F{ and F° the o-fields
generated by {¢(T,w):0 < 7 < t}, and {¢(7,w):t < 7 < oo} respectively. Let the signed

measure v; s be defined on (2 x Q, F§ x ;) by
v¢s = P(w:(w,w)€ B) - P x P(B), for Be F§x F>2,.

For any {B € F§ x F3;}, the set (w : (wy,w) € B) is in F, and since it is also a monotone

class, v is well defined. The stochastic process o(t,w), is said to have Type II  mixing if

@(8) = sup sup {170 6(A) | -— 0.
. 20 A€ FixF® §—o0

t+4
Remark on ¢ mixing: The results we describe hold for Type I mixing as well, both of
which were introduced by Volkonskii and Rozanov (1959), since for both types of mixing

we have [v],s(Q x Q) < 245(4).

wop12 v2.11 2




N. In-trator March 9, 1990
Let € be a positive number, and consider the system:
| E(t,w) = H(ze(t,w),w,t/e),
Ue(t) = Ge(we(t), ), (2.1)

z2(0,w) = y.(0) = zg € R™.

Assume:
1. H is jointly measurable with respect to its three arguments.
2. G(z,t) = E[H(z(s,w),t/¢€)], and for all i and j
0 . . . .
—a—z—jG’;(:, t) exists, and is continuous in (z,1t).

3. Forsome T > 0:

a. There exists a unique solution, z(t,w), on [0, T} for almost all w; and

o

. A solution to
gzg(t, s,z) = G(g(t,s,z),t), g(s,8,2) ==z,
exists on (0,T] x [0,T] x R™.
The following notations will be used:
1. Hz(t,w),w,t) E H(z (t,w),w,t/¢)
2. g,(t,s,2) = (8/9s)g(t, s, z). .
3. g.(t,s,z) = the n x n matrix with (7, j) component (J3/9z;)g.(t, s, r)-
4. For H(z,w, ) define the families of o-fields F§ and F;® such that, for each t > 0. 3

contains the o-field generated by
{H(z,w,7):0< < t,z € R},
and F® contains the o-field generated by

{H(z,w,7):t <1 <o00,z€R"}

wopl2 v2.11 3




N. Intrator . March 9, 1990
The relation between the random differential equation and its averaged version for system

(2.1) under conditions (1), (2), and (3) is.given by:

Lemma (Geman 1977) For any C' function K : R — R' and t € (0, T):

E[K(z(t))] = K(y(t)) + /o /nxn (-‘%K(g(t, s,z(s,w)))) . Hiz(s,w), 1, $)du, ods,

provided that
' 0

- (52K (a(ts52(5,0))) - Hz(s,w),ms), and
0
(52 K563 2(s,0)))) - H(zls,)1)
are absolutely integrable on  x  x [0, T}, with respect to dP(w)dP(n)ds.

The proof of the lemma is based on the relationship between the initial conditions in

time and in space for an ODE, namely: If g(¢, s, z) is the function satisfying

'g_tg(ta‘s’:) = G(g(t,s,x),t}

then
g.(t, 8, :C) = —gz(t’ S, I)G(‘B’ 5)

for all t € [0, 0), s € [0,00), and z € R™. This follows from the observation that g(t,s, z)

is constant along trajectories of the form (s, z(s)) (cf. Hartman, 1964 chap 5).

Theorem (Geman, 1977) Finite time averaging. Assume also that:

4. There exist continuous functions By (r,t), B2(r,t), and B3(r,t),such that forall ¢, j, k, 7 >

0, and w:
a. [ Hi(z,w,t,7)[< By([ z |52);
b. [(9/0z;)Hi(z,w,t,7) [< Ba(] 2 [,2);
c. |(8%)0z,;0zi)H (2w, t, 7)< Bs(] ¢ |st).
5. sup,5o,¢¢(0,7] | ye(t) 1< By for séme B4 and T.

wopl2 v2.11 4
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N. Intrator March 9, 1990

Then

sup zc(t) — ye(2) | —0
tgfo,T

in probability.

3. Averaging on [0, x)

When averaging on an infinite interval we require that € be a function of t and € \, 0,
meaning that the mixing rate becomes stronger in time. More specifically, let € be a function

of the form €(t) = €é(t) where € is monotonically decreasing to zero in time.

The above lemma still holds when z, H, g and G are replaced by z., H,, g. and G,

respectively, and also when ¢ becomes a function of t.

In order for the approximation to hold on {0, co) we require that By, B,, Bs are constants
in condition 4 (this will be relaxed later) extend condition 5 to hold for ¢ € {0, o), and add

the following relation between the rate of the mixing of H and the convergence of ¢ to zero:

6. 37 >0, ¢c>0,such that () < 677, and €(¢t) < t'(%“*c), for a monotone decreasing

é
Theorem 3.1 Assume H, is of Type II v mixing, and satisfies condition 1-6. then

llmsupEIr (t) — y(t) *= 0.
€©=—0 459

Proof: Assume first that t is an integer. Fix ¢y and apply the lenuna to the system using
K(z) =|z - y(t) [*:

E | z(t) - y(1) =

¢
= | / / il\'(g((t,s, rc(s,w)))) cH (2 (s,w)sn, s)dv, pds |
o Jaxn'\0z ]
[ <]
SZ l/ / _1\ (gelt, s,z (57‘”)))) A (2e(s,w)yn,s)dug ods |
koy Jk-1Jax
wop12 v2.11 5




N. Intrator ] March 9, 1990

For any fixed §, > 0 (to be chosen later), since each integral is bounded we can write Vk:

/: _/nxn(;—K(ge(t,'s,zt(s,w)))) CHo(zo(s,w)y 1, $)du, ods =
I /: 146, ‘/;xn(%x(g‘(t,s,z,(s,u)))). o(z 6(3 w), N, 5)dv, ods

J ..
H * ./l;—x+6. «/:lxn(-a_zk (ge(ts 50 2e(s - 6"’“)))))'
‘H (35(5 - Jk) W), 7 S)d'U' ods

: [ ARG daw))  Bededee) )
IIr - (E—K(ge(t,s z¢(s - 6k,w)))) (ze(s = bkyw),y 1, 8)}du, ods.
The bounds on z, and its derivatives, and the ‘smoothness of K imply that I is O(éc). In
the second term we can replace v, g by v,_s 5 since these measures agree on (1 x Q, F!
- F*), s> 4, and since z.(s — §,w) is fg” measurable. Since v, is the difference of two
" probability measures, the total variatirn measure satisfies:

lv|¢,6(Q X Q) <2 and lvlt,é(Q P Q) =2 Z \L‘|¢.f(.4).
AEF xF>

b
therefore, with Type II (or I) mixing: |vi, s(Q x Q) < 2£(8). Applying this to the second
integral and using the above bounds agam we get that Il is O( ~ék ek ~ 1))). The last
term is also O(6,) from the smoothness of H, and of ..

Now choose 6 = (/eg(k — 1)‘(”%”, k > 1, then since e(k — 1) < ek —~ I)"Tl”‘”,
we get 8 /e(k—1) > —\-,‘!-—;(L - 1)%+%c. From the condition on p we have ;(6k,’e(k -1) <
cé‘y(k ~1)-(1+379), Since 7 > 0, the sum

3 0(64) +o( (n/et = 1)) = 0(&"7)-

k>1 .

For the segment of ¢ between two integers, an analogous argument is applied yielding an
L , (1 . .
extra term of the form O(ef + ¢¢). therefore E | z,(t) -y (1) |"= O(co-( ”) uniformly in

t.

wopl12 v2.11 6




N. Intrator March 9, 1990
This implies that

sup £ | z(t) - ye(t) '= 0 ("),
t>0

€o—

sup E | z.(t) - v(t) *= 0.
0¢>0

¢

The following problem is closely related: For fixed w, let H(z,w,t) map R” x R™ x R!
into R™. Assume that for each z, H(z,w,t) is a mixing process, and for each z and t define

G(z,t) = E(H(z,w,t)]. Consider the random equation
Z'g(t, w) = gH(zi(t’W)s W, t)» xé(o’ “’) = o, (31)

with its averaged equation

ge(t) = €G(ye(t),t),  ye(0) = zo. (3.2)
For equation (3.2) condition 6 becomes:
6'. 3y > 0, such that
i) p(8) <677,
ii) &(t) = eor(t)t=°, for p= 15, ¢ > %, and Vt: 0 < ¢; < r(t) < ca.

Theorem 3.2 Under the assumptions of theorem (2.1) and (6);

lim su E I; - Y: 2: 0
‘o_.otzlg | (1) y(z)l

Proof: Apply the change of variables: ¢t = ;‘;r"'“, dt = :—0(2 +¢)r!“¢dr, to equation (3.1):

i-((»r’w) - T'P(2+c)r(.r3+4:)]{‘ (I(,W,T2+C/£0)(2 - C)TlfC
= r{(r** ) H (2w, 7/€(T)),

for ¢(7) = €7 ('*9). Now observe that ¢ satisfies condition (6) in theorem (3.1), which

gives the desired result. o

wopl2 v2.11 7
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As can be seen from the pr'oof, p has to satisfy the conditions § < p < 1, and &(t) has
to be greater than t~! so _that r(t) > co > 0, which allows the invocatioﬁ of the previous
theorem. If follows that if &(t) = ¢!, a convergence is assured for any Type II mixing.
Obviously, p may be larger than 1 since é may be split into two functions, one bounded
and the other satisfying the conditions of the theorem. The sam:e argument holds for r(¢),
however, it is clear that one would like ¢ to go as slow as possible to zero, since then if
the averaged version has a limit, the convergence rate of both equations éo that limit is

inversely proportional to p.

It is possible to extend the theory to the cases where the partial derivatives of H have a
polynomial growth it time. Then ¢ has to decrease faster so that the above integrals may

still be controlled. We get the following theorem: -

Theorem 3.3 Assume that B,, B2, B3, and B; are bounded by t* for some a > 0 in

condition 4 of theorem 3.1, and replace condition 6 with the following:

6. 3y>0, c> —‘,;, such that ¢(8) < 677, and &(t) < t=(1*+<*3%) for a monotone decreasing

€. Then

lim, sup E | z(t) - ye(t) i*=0.

(o—'o t

Proof: When applying the lemma as before we get the following:
I=Y 0(6)(k~1)
k

IT= Zo (6x/e(k - 1))&’
I =" 08 )k,
k

Now chose 8, = /¢,(k - 1)"(+3e=3)43a) then since €(t) < t~(1+er3a) e get just as

before &i/e(k — 1) > ﬁ(k - 1)-;(:——:)- The rest of the proof follows exactly as before. ¢

wop12 v2.11 8
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Extending theorem 3.2 to the case where the partial spatial derivatives are bounded by
a polynomial in ¢ is done by absorbing the growth of H into ¢, which gives the following

corollary:

Carollary 3.4 Assume that B;, B,, B3 and B, are bounded by ¢t* for some a > 0 in

condition 4 of theorem 3.1, and replace condition 6 in theorem 3.2 with the following:
6'. 3y > 0, such that
i) (8) <677,
ii) &(t) = eor(t)t~(*19), for p = ;_E’ c> %, and Vt: 0 < ¢; < r(t) < cz. Then

lim sup E | z:(¢) — ye(e) = 0.
€©0—0 ¢>0

An important observation has to be made here: If the deterministic version represents
a converging trajectory, e.g., if the equation represents a gradient descent, then as long as
&t) > t~!, the deterministic version will still converge to a true local minimum, however
if () < t™1, then [ &(r) < oo, and so the convergence of the deterministic equation is
not assured, whicl: implies that the convergence of the stochastic version to a true local

minimum is not granted.

4. An application to the synaptic modification equations of a BCM neuron

In this section, we apply the theorem to a2 random differential equation representing the
low governing synaptic weight modification in the BC.\.I theory for learning and memory
in neurons, Bienenstock et al. (1982). We start with a short review on the notations and
definitions of BCM theory, a more thorough review can be found in Intrator (1930). and

the references therein.

Consider a neuron whose input is the vector £ = (ry,...,2x), has a synaptic-weight
vector m = (my,...,mp), both in RV, and activity (in the lincar région) ¢ = r-m. The

input z is assumed to be a stochastic process of Type I ,» mixing, bounded. and piecewise

wopl2 v2.11 9
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constant. Let O = E[(z-m)?], ¢(c,Om) = ¢ — ¢O,n. c represents the linear projection

of z onto m, and we seek an optimal projection in some sense.

The BCM synaptic modification equations are given by:
= p(t)$(z - m, Om)z, m(0) = mo, - (4.1)

their averaged version is given by:

= p(t)E[d>(z: : ﬁz,G)m).z:], m(0) = mo. (4.2)

#(t) is a global modulator which is assumed- to take into account all the global factors
affecting the cell, e.g., the beginning or end of the critical period, or state of arousal (Bear

and Cooper, 1988).

Equation (4.2) is shown to be a dimensionality reduction method based on a cost function
that favors directions m for which the distribution of the inputs is different from normal by

means of skewness (Intrator, 1990).

Our aim is to show the convergence of the stochastic differential equation. This will be
done in two step; First we show that the averaged deterministic equation converges, and
then we use theorem 3.2 to show the convergence of the random differential equation to its

averaged deterministic equation.
The convergence of the deterministic equation

Without loss of generality, we may assume that the random process r is in the unit hail
in RV, and Var(z-m) > A|| m || > 0, which simply says that z does not lie in a subspace
or a manifold of RY. Since we are interested in dimensionality reduction. we can always
reduce a-priori the dimensionality of £ so that it will span R for some.V. When the theory
is applied to a finite value random vector, 2y,...,Zn, We can restrict m to be in the span

ofzy,...,z,.

wop12 v2.11 10
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When we multiply both sides of the above equation by 7, assuming none of its compo-

nents is zero, we get:

3 1l = Ellz - mu) = S E7{(= -, )
<l | - Var'(z - m,)
<l P =~ 500 I
= 1l {1 - SN0 [,
which implies that || m,, || < 535. ¢
Using this fact we can now show the convergence of ,. We observe that m, = -VR,

where R(m,) = ~4{E[(z - m,)®] — E*[(z - ™m,)?]} is the risk. R is bounded from below

since || 7, || is bounded, therefore m, converges to a local minimum of R. ¢

The convergence of the stochastic equation

Claim Under the above conditions m,(t) converges in L? to a local minimum of the risk.

Proof: The calculation above implies that m, is bounded for {almost) every pu.

In our case By, B;, B; aud B4 are independent of t or m,, therefore, if we replace ¢(¢t)
by p(t) and apply theorem 3.2, we get

sup Elm,(t) - m,(t)]? — 0.
>0 Ho—0

7, the solution to the deterministic equation will converge to the same local minin:um
¥, Yu if pp < C, for some positive constant C. therefore we can choose T for which

[Mmu(t) - §l < £, po <C, t>T,thenfort > T we have:

§
Im,(t) ~ 7 1< [mu(t) — mu ()] + | (t) = § 1< Jmu(t) — myu() + 5

+
12 o>

= sup Elm,(t) — §|< sup Ejm,(t) ~ my(t)
¢>7 >

wopl12 v2.11 11
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4 is arbitrary, which implies that

Elm,(t) - § | —0
=

5. Summary

It has been shown that under mild conditions, the equations #, = ¢eH(z,w,t), and J, =
€G(y,t) where G(z,t) = E[H(z,w,t)], have close trajectories in the infinite interval when
€(t) < t=3. The result may be computationally useful, and as has been shown in the

example, may assist in the analysis of the random differential equation.
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